Are X-ray landmark Detection Models fair?
A preliminary assessment and mitigation strategy
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Abstract

Datasets used for benchmarking are always acquired with
a view to representing different categories equally, with the
best intentions to be fair to all. Whilst it is usually as-
sumed that equal numerical representation in the training
data leads to similar accuracy among demographic groups,
so far, there has been next to no investigation or measure-
ment of this assumption for the anatomical landmark de-
tection task. In this work, we define what it means for
anatomical landmark detection to be carried out fairly on
different demographic categories, evaluating the fairness of
models trained on two publicly available X-ray datasets that
are known to be balanced, and showing how unfair predic-
tions can uncover metadata attributes intended to be hid-
den. We further design a potential mitigation strategy in the
landmark detection context, adapting a group optimization
method typically employed for debiasing image classifica-
tion models, obtaining a partial improvement in terms of
per-keypoint fairness, while paving the way for further re-
search in this field.

1. Introduction

Precise and reliable anatomical landmark detection is criti-
cal for several clinical tasks [2, 8]. While the focus has been
on overall accuracy [4, 9, 18] and confidence [10], few stud-
ies have addressed bias within these models [3]. Biased and
unfair predictions in medical imaging can stem from non-
representative training datasets or from models that inadver-
tently perform better for certain demographic sub-groups
(i.e., age, gender, race). Limited literature exists on fairness
assessment in landmark detection, and is mainly for face
recognition datasets [7]. However, fairness in anatomical
landmark prediction remains largely unexplored, despite its
crucial clinical applications, such as diagnosis and surgical
treatment planning [14]. Our work addresses this critical
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gap by establishing a protocol for assessing fairness in X-
ray anatomical landmark prediction. Our main contribution
is to show how fairness must be evaluated at single keypoint
level (see Fig. 1), since global measures hide fairness is-
sues that may only affect a specific subset of keypoints. To
this end, we adapt a popular classification fairness metric
for use with landmark detection, further investigating the
relationship between landmark prediction and patient meta-
data (age, gender), we show how errors on keypoints can
be used to infer sensitive attributes, potentially raising pri-
vacy concerns. After measuring the fairness issue, we pro-
pose a potential mitigation approach based on a group op-
timization method typically employed for debiasing image
classification models [12, 17], that is GroupDRO [15]. Our
results show a partial improvement in the fairness metrics
with negligible degradation of the overall landmark detec-
tion accuracy. To our knowledge, we are the first to expose a
potential lack of fairness in the context of anatomical land-
mark detection, which occurs even when the training data
is carefully acquired in balanced categories. This work is
put forward as a critical foundation for improving data ac-
quisition makeup and for developing benchmarking criteria.
At the same time, we aim to shed light on the necessity of
developing an ad-hoc solution for improving fairness in the
context of anatomical landmark detection.

2. Approach

2.1. Reference Datasets

Since a study on attribute bias requires plentiful raw im-
ages and metadata, of the publicly available contenders (de-
scribed in [4, 19]), only the Digital Hand Atlas (DHA) [6]
and the CephAdoAdu dataset are fit for purpose.

The DHA dataset (Fig. 12a) includes 909 radiographs (aver-
age size: 1563x2169 pixels) annotated with 37 landmarks.
Among the available demographic attributes, we consider
age and gender, which divide patients into groups large
enough to allow a reliable assessment of group fairness. The
dataset is balanced by design, with equal male and female
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Figure 1. Numbered ground truth landmarks annotations for con-
sidered datasets.

patients per age group and broadly similar numbers of pa-
tients per age group. Ages range from 9 to 18 years, but
due to small per-group sizes, we cluster them into younger’
(9-13 y.0.) and older’ (14-18 y.0.). The CephAdoAdu
dataset (Fig. 1b) is a new benchmark comprising cephalo-
metric X-ray images across age groups. Our dataset version
includes 350 adult and 350 adolescents X-ray images, and
manually annotated with 10 key landmarks. The training
protocol is age-balanced, with 400 images (including 40 for
validation) for training and 300 for testing, ensuring even
distribution of adult and adolescent cases.

2.2. Machine learning framework

We address landmark detection by framing it as a su-
pervised pixel-wise classification task to produce output
heatmaps. Specifically, we exploit a U-Net model to predict
several landmarks at once, creating one heatmap for each
landmark as separate output channels (n heatmaps, where n
is the number of annotated landmarks). As per [10], we gen-
erate ground-truth heatmaps from a single pixel input an-
notation. Formally, H,(i,5) = 1 (i = x5 A j = ys) where
H, (i, j) is the heatmap value at pixel (¢, 7), the ground truth
coordinates of the landmark (s) are at pixel (zs,ys), and 1
evaluates to 1 only when the condition is satisfied. The out-
put heatmap intensities are in [0, 1], the hottest of which is
the predicted landmark location.

2.3. Adapting fairness evaluation metrics

Since the dataset is designed to be balanced, it is as-
sumed to be fair across all considered demographic cat-
egories (gender and age). Our goal is to identify the
presence of group fairness issues [11] within the generic
task of landmark detection. It is crucial to define an ap-
propriate way of measuring whether a landmark detection
model is fair (or unfair). A popular fairness metric for
classification tasks is the Demographic Parity (DP), a.k.a.
Statistical Parity [1, 5]. DP measures whether predict-
ing a positive outcome is independent of a certain sen-

sitive attribute. In a binary classification task, given a
training dataset D={(z1,¥1,91),-- -, (Tn, Yn, gn)}, Where
y € {0,1} is the target label, and g encodes a group
(0—Male, 1—Female), DP is satisfied when a positive out-
come is equal across different demographic groups:

P(y=1]g=0) = P(y=1]|g=1) 1)

In this setting, this can be verified by computing the clas-
sifier’s True Positive Rate TPR::TPZ%, separately for
each group. The largest absolute T'PR difference between
group pairs provides an empirical measure of a classifier’s
fairness.

In landmark detection tasks, instead of being right or
wrong, the prediction error is measured through the Mean
Radial Error (MRE); this is the average distance between
the predicted and the actual landmark positions, averaged
over all landmarks. Here we use the Euclidean (Ls) dis-
tance. Another measure of the model’s accuracy is the
Success Detection Rate (SDR), reporting the proportion of
predicted landmarks within a clinically acceptable distance
threshold from the ground truth. In the case of n land-
marks and a threshold ¢, SDR = L 3" | 1(MRE; < ¢).
Evidently, SDR can be translated as the TPR for a land-
mark prediction task: a True Positive is counted when a
landmark is predicted within a threshold ¢ from the ground
truth. Otherwise, the model is said to have missed the pre-
diction (False Negative). In our analysis, we compute the
DP for each keypoint (KP), to uncover potential fairness is-
sues hiding in individual keypoint predictions. This results
in a specific DP value for each landmark, calculated with
respect to all available sensitive attributes.

2.4. Mitigating Fairness Issues

In this work, we provide an attempt at mitigating the
emerged fairness issues, which seem to be related not only
to demographic groups but also stemming from particular
anatomical keypoints. As such, we opt to address the prob-
lem with a subpopulation characterization as fine-grained as
possible. Given a dataset with K keypoints and G known
demographic groups, we consider K x G possible sub-
groups. We encode them as an additional set of labels
G = {0,...,G}. For an input image z € REXW*H and
per-keypoint ground-truth locations y € RX*2, we provide
a group label g € G¥, considering each keypoint separately,
separating loss contributions from every G demographic
group. For instance, in the case of the DHA dataset, we
consider 37 keypoints and 4 demographic groups: {Young
Males, Young Females, Old Males, Old Females}, for a to-
tal of 148 subgroups, where g = 0 denotes KP1 from Young
Males, and g = 148 denotes KP37 in Old Females. Our sub-
class categorization allows us to frame the learning problem
as

0= argminma {E, . _p, (00 ()]} @)



where 6 are the Unet parameters to be optimized. This ob-
jective, known as GroupDRO [15], is originally intended for
mitigating spurious correlations and improving worst-group
generalization in image classification settings. We provide
a customized adaptation of the method for landmark detec-
tion, fine-tuning the original model trained without any mit-
igation strategy with the objective in Equation 2.

3. Experiments

3.1. Experiment details

Experiments utilize a U-Net with an ImageNet pre-trained
DenseNetl21 encoder. Images are padded and resized to
512x512 pixels maintaining aspect ratio and normalized to
[0, 1]. Optimization employs AdamW for up to 200 epochs
with early stopping. The learning rate starts at 103, ad-
justed by Exponential scheduler. The batch size is 8 with
a gradient accumulation of 8. For SDR computation, ¢ is
set to 2 mm, as it is the more restrictive threshold gener-
ally reported [4]. We compute metrics by converting pixel
distances to millimeters: for CephAdoAdu, we use a pixel
resolution of 0.1 mm; for DHA, we assume a 50 mm dis-
tance between wrist endpoints, as proposed by [13].

3.1.1. Baseline computation

As abaseline, we perform 10 different hold-outs of the data,
preserving the balance between the demographic groups.
For each hold-out, we train a model on the training set
and evaluate it on the held-out test set. Finally, we report
the mean and standard deviation for each evaluation metric
across the ten runs. Fig. 2a (top) shows the average MRE
values for each keypoint of the DHA dataset across the
ten runs. Wrist keypoints (KP1 to KP18) generally exhibit
higher MRE values, indicating that they are somewhat more
challenging to detect, with several keypoints far exceeding
the overall average. Finger keypoints have comparatively
better performance, though some keypoints (KP19, KP36)
still exhibit high MRE. The overall MRE across all key-
points in the 10 performed runs is 0.72 mm, with the MRE
for the wrist keypoints being slightly higher (0.84 mm)
compared to MRE for finger keypoints (0.61mm). Fig.
2b shows the same analysis replicated for the CephAdoAdu
dataset. In this dataset, the overall MRE is 1.13 mm, with
some keypoints harder to detect than the average (e.g., KP4,
KP6 and KP8). For both datasets, the high variability in
MRE across keypoints propagates in the SDR computations
and highlights the importance of considering each keypoint
individually, as relying solely on metrics averaged across
the keypoints could easily hide any detection issue poten-
tially correlated to demographic groups.

3.1.2. Fairness assessment

First, we compute the adapted fairness metric with respect
to specific sensitive attributes over the 10 hold-outs pre-

viously introduced and averaged across all the available
keypoints. For the DHA dataset, we get an overall maxi-
mum DP equal to 0.045 4= 0.009, while for the CheAdoAdu
dataset, an average value of 0.080£0.006 is obtained. Such
relatively low values would suggest that our models are fair
to the sensitive attributes. However, motivated by our pre-
vious results, whilst identifying peaks and troughs in the
MRE for specific keypoints, we deepen the fairness eval-
uation by framing our analysis as a per-keypoint problem.
Fig.2a (bottom) and Fig.2b (bottom) show the same analysis
on the sensitive attributes for single keypoints for our two
datasets. Analyzing these figures reveals significant vari-
ations in DP values across keypoints with respect to dif-
ferent sensitive attributes. Starting from the DHA dataset,
for example, KP1 and KP3 (ulna) show a DP value of 0.20,
meaning a maximum gap of 20% in the SDR across de-
mographic groups. Specifically, this maximum difference
arises between female patients in the two age groups. Inter-
estingly, this doesn’t align with corresponding medical re-
search [16], who find no statistically significant difference
between ages in males and females, ultimately suggesting
dataset bias. Moreover, wrist keypoints show a DP value on
average much higher than fingers, suggesting higher fair-
ness in finger regions and underscoring the need for individ-
ual keypoint analysis over averaging. To further investigate
the statistical significance of the obtained results, for each
of our ten runs, we perform a metadata attribute random-
ization experiment. Specifically, we shuffle the sensitive
attributes with a probability of 50% for each sample, ob-
taining by construction a test evaluation uncorrelated with
metadata attributes. We report the corresponding average
DP per keypoint in orange in Figs. 2a and 2b. For the DHA
dataset, the most unfair wrist keypoints exhibit a DP sig-
nificantly higher than the attribute-randomized counterpart,
while finger keypoints, unaffected by fairness issues, main-
tain similar values across both settings. In the CephAdoAdu
dataset, KP4, KP5, and KP6 show higher demographic par-
ity but not significantly above the randomized counterpart.
Notably, KP1 has a DP of 0.17, exceeding the randomized
experiment, suggesting a potential fairness issue. Finally,
to further support the obtained results, excluding that identi-
fied fairness issues are a consequence of a specific or subop-
timal model, we report a comparison with available State-
Of-The-Art (SOTA) and perform an ablation study on the
Unet encoder in Table 1. Different models show similar val-
ues for the average DP across keypoints and roughly similar
average MREs, being competitive with SOTA.

3.1.3. Results on fairness mitigation

Fig. 3a shows the results of our model fine-tuned with
the GroupDRO objective in terms of DP for the DHA
dataset (top) and CephAdoAdu (bottom). Regarding the
DHA dataset, the proposed mitigation approach brings a
general decreasing of DP across keypoints. However, the
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Figure 2. Assessment of keypoint prediction errors and demographic parity. (a) Top panel: MRE for 37 DHA dataset keypoints, with
higher error in wrist vs. finger keypoints. Bottom panel: Demographic Parity measurements with original and randomized attributes across
folds. (b) Top panel: MRE for 10 CephAdoAdu dataset keypoints. Bottom panel: Demographic Parity measurements.

fairness issue is not entirely solved, with some wrist key- 0.15. Importantly, the mitigated models roughly preserve
points yet presenting a final DP higher than 0.10 (e.g., KP1, the average MRE across keypoints for both datasets, with a
KP11, KP18 and KP19). A similar trend is observed in the maximum drop of 0.07 and 0.04 for the CephoAdoAdu and

CephAdoAdu dataset, with some keypoints improving their the HDA dataset, respectively.
DP (e.g., KP4 and KP8). Again, the fairness issue is not
entirely solved, with KP1 still presenting a DP higher than



Table 1. Top. Comparison of state-of-the-art results for anatomical landmark detection in X-ray images. Bottom. Ablation on specific

Unet backbone.
CephAdoAdu Digital Hand Atlas
Methods MRE | SDR(%) 1 DP | MRE | SDR(%) 1 DP Wrist | DP Fingers]
(mm, std.) 2mm 2.5mm 3mm 4mm (avg. KPs) (mm, std.) 2mm 4mm 10mm (avg. KPs) (avg. KPs)
SCN [13] 1.73 (1.06) 8297 9040 9337 96.57 - 0.66 94.99 99.27  99.99 - -
GU2Net [20] 1.69 (0.91) 80.33 88.13 9147 95.57 0.84 95.40 99.35 99.75 - -
CeLDA [19] 1.05(0.33) 89.13 93.60 96.17 98.67 - - - - - - -
Ours (resnet50) 1.13(0.04) 8590 9143 9443 97.50 0.062(0.004) | 0.80(0.02) 96.47 99.16 99.69 0.076 (0.006) 0.034 (0.007)
Ours (vggl9) 1.10 (0.01) 85.77 90.83 9393 96.97 0.065(0.003) | 1.04(0.20) 95.64 98.48 99.25 0.080 (0.004) 0.029 (0.002)
Ours (densenet121) | 1.12(0.04) 86.97 91.50 94.57 97.73 0.081 (0.006) | 0.76 (0.06) 97.05 99.52 99.88 0.073 (0.011) 0.017 (0.008)
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Figure 3. Per key-point Demographic Parity (DP) on vanilla and fairness mitigated models for the (a) DHA and (b) CephAdoAdu datasets.

Table 2. 5-fold classification accuracy of a CNN trained on images
and an RF trained on MREs, for various attributes.

Dataset | Sensitive | Filtered | CNN image RF MRE-based
Attribute|Attribute| Classifier Classifier
Age male |0.53+0.08| 0.68 +0.05
DHA female |0.56 £0.07| 0.64 +0.12
Gender |_Young 0.56 £0.07| 0.73 +0.13
old 0.55+0.08| 0.72 +0.07
CephAdoAdu| Age None |0.59+0.16| 0.64 +0.05

3.1.4. Privacy-related issues

Our results show a correlation between the MRE on specific
keypoints and metadata attributes. Here, we evaluate if such
an undesired correlation is strong enough to infer the sen-
sitive attribute from the computed errors, potentially lead-
ing to a privacy issue. Specifically, for the CephAdoAdu

dataset we consider the only available attribute (age). For
the DHA dataset, where we have two sensitive attributes
(gender and age), we further filter data according to a spe-
cific metadata attribute (young/old and female/male respec-
tively), reported as Filtered attribute in Table 2. This ap-
proach prevents attribute mixing, isolating each sensitive
attribute’s contribution. Thus, we train a Random Forest
(RF) classifier, exploiting the MREs corresponding to each
keypoint as features and the target sensitive attribute as la-
bels. We perform a 5-fold cross-validation, replicating the
same experiments considering the test MRE across all key-
points as input features. Table 2 summarizes the obtained
results. For both datasets, the MREs across keypoints bring
an average test accuracy much higher than a random guess,
with a maximum value of 0.75 for the sensitive attribute age
in the female filtered attribute for the HDA and 0.64 for the



CephAdoAdu dataset. To ensure that these results are not a
simple consequence of the sensitive attribute being inferred
from the images, we train a CNN directly on the X-ray im-
ages with the same folds. As we can see in Table 2, we
obtain an accuracy close to random guessing, further prov-
ing that the results are an actual consequence of the fairness
issue.

4. Conclusions and future work

Despite the best intentions to acquire and anonymise patient
data, we uncover concerns around the varying performance
of landmark detection models known to be performing well.
Privacy can be compromised through unintentional lack of
fairness in such model—data pairs. Further work is required
to understand this phenomenon better, potentially requir-
ing the acquisition of new datasets and experimenting with
different proportions of subjects in each demographic cate-
gory, with a view to stabilising demographic parity. In this
work, we adapt a typical mitigation strategy for image clas-
sification model debiasing, obtaining a partial mitigation of
the described phenomenon. Despite promising results, our
work eventually aims to highlight the necessity of design-
ing ad-hoc methods (e.g., involving domain practitioners to
define proper anatomical priors) for mitigating unfairness in
anatomical landmark detection, potentially paving the way
for multiple future investigations.
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