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Bias-Conflicting Memorization Issue

The few bias-conflicting samples are quickly memorized from the auxiliary
models often used in Unsupervised Debiasing methods [3].

Diffusing DeBias (DDB):

Synthetic Bias Amplification for Model Debiasing
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Diffusing DeBias: A Plug-in for Unsupervised Debiasing

DDB is a plug-in for unsupervised model debiasing. Hence, it can be
integrated as prior step for different debiasing strategies (e.q., [4], [9]).
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Results

DDB Improvement Over State-of-the-Art Methods

Performance delta (A%) compared to best competitor per benchmark
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Observation
Conditional Diffusion Probabilistic Models trained on biased data inherently
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learn and even amplify the per-class bias [1,2]. C— _ _ _

Two-gtep.s * Debiasing Recipe BA trained on Synthetic (DDB) BA trained on Real

Intuition . . . . Debiasing Recipe I (BA + G-DRO) 90.81 % 79.43% (1 epoch)

Train a highly effective auxiliary model only on a synthetic dataset generated * Bias Amplifier % Bias Amplifier Debiased Recipe II (L{F-style) 91.56 % 78.45%
by a bias-capturing diffusion model (our BiasAmplifier, BA). RecipellL Model
End-to-End Ablation Study on using synthetic biased images for training our BA.
Debiasi
Key Advantage SR

BA learns bias from a synthetic substitute set, never seeing real samples. As
such it cannot memorize any bias-conflicting sample, by construction.

D Bilas-Align Sample

D Bias-Conflicting Sample

Trainable / Freezed Parameters

Examples of the
synthetic images
used to train
our Bias
Amplifier

Summary of Contributions

We introduce DDB, a novel plug-in framework that learns bias distribution
of training data using a conditional diffusion model.

DDB trains a Bias Amplifier on synthetic bias-aligned samples. This
uniquely avoids common issues like bias-conflicting sample overfitting and
interference.

DDB achieves new state-of-the-art results on popular biased benchmarks
(for both single and multiple biases) outperforming previous methods,
iIncluding those based on Vision-Language Models.
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