

Diffusing DeBias (DDB): Synthetic Bias Amplification for Model Debiasing

Massimiliano Ciranni* 1, Vito Paolo Pastore* 1,2, Roberto Di Via* 1, Enzo Tartaglione 3, Francesca Odore 1, Vittorio Murino 2,4

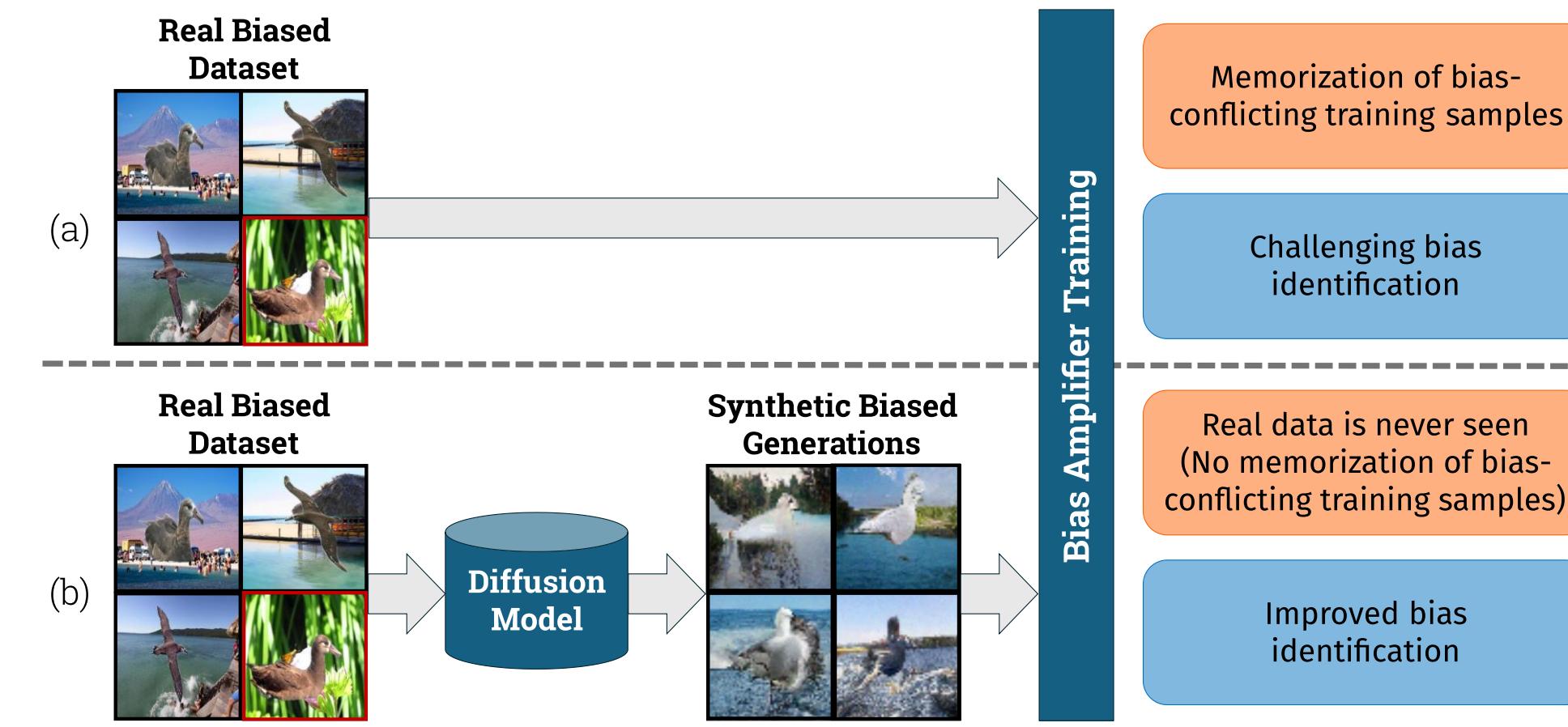
¹MaLGa–DIBRIS, University of Genoa, Italy · ² AI For Good (AIGO), Istituto Italiano di Tecnologia, Genoa, Italy

*Equal Contribution ³Télécom Paris, École Polytechnique, France · ⁴Department of Computer Science, University of Verona, Italy

vito.paolo.pastore@unige.it

Bias-Conflicting Memorization Issue

The few bias-conflicting samples are quickly memorized from the auxiliary models often used in Unsupervised Debiasing methods [3].



Bias Amplification Without Memorization

What if the auxiliary model never sees the real biased dataset, but only a synthetic and bias-amplified version of it?

Observation

Conditional Diffusion Probabilistic Models trained on biased data inherently **learn and even amplify** the per-class bias [1,2].

Intuition

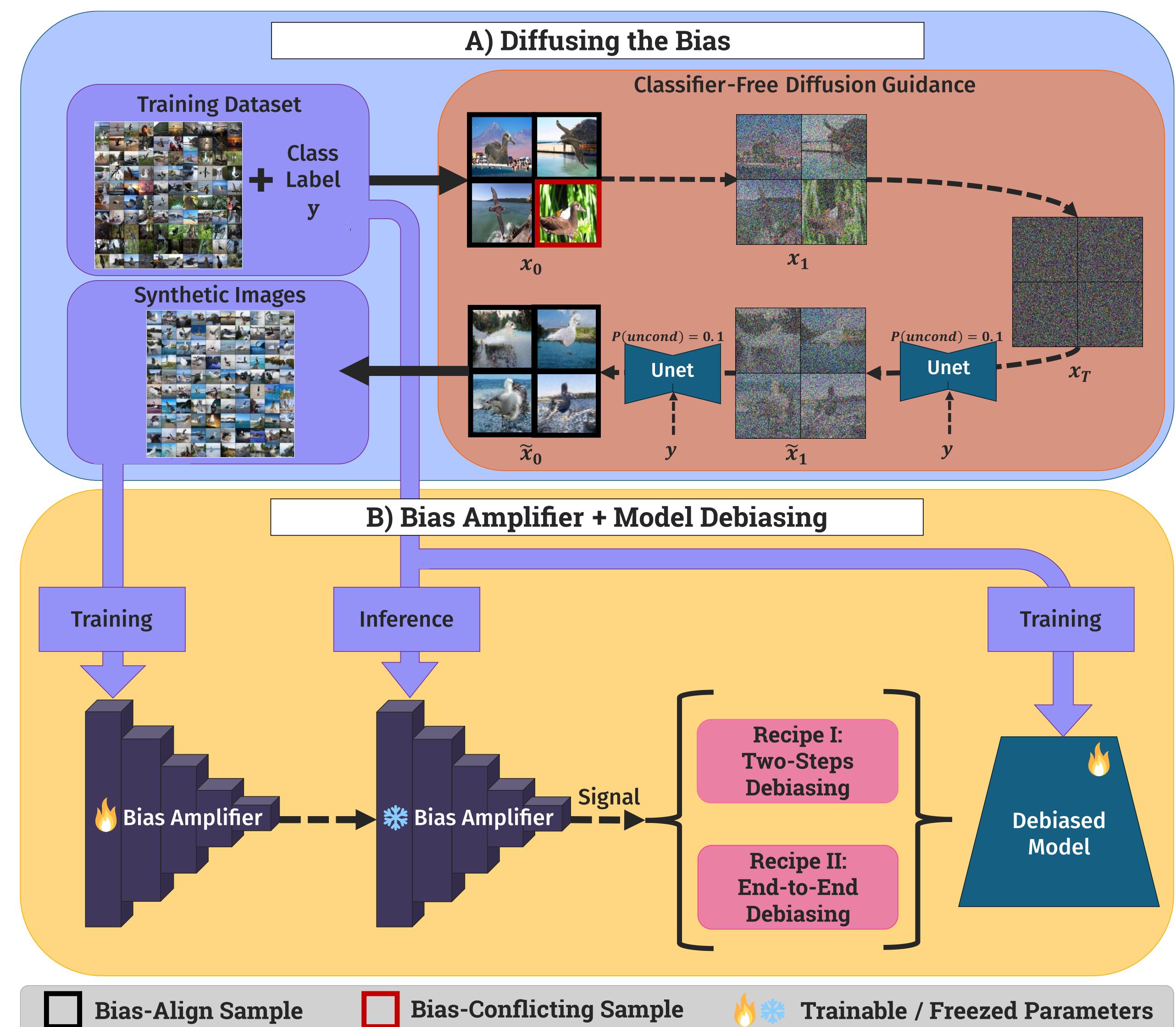
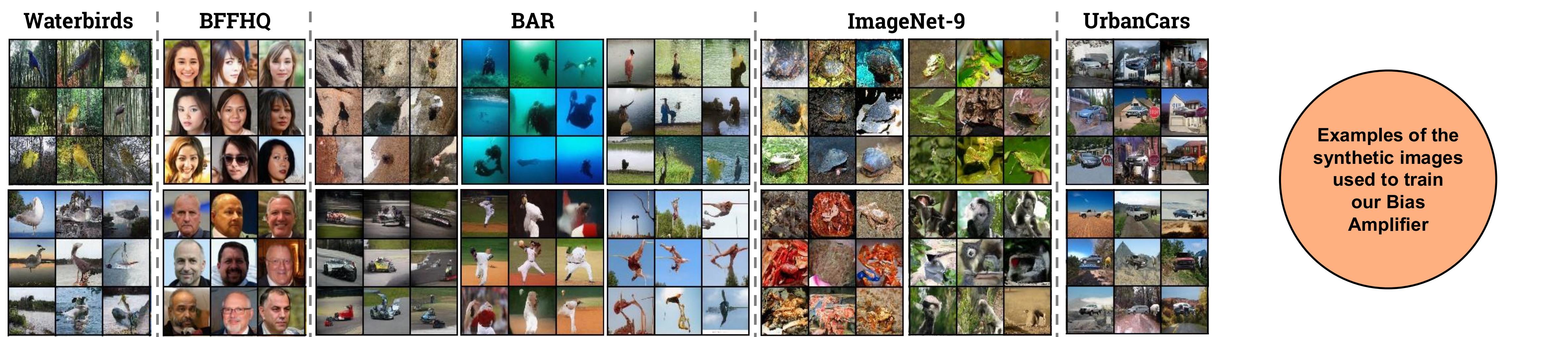
Train a highly effective auxiliary model *only* on a synthetic dataset generated by a bias-capturing diffusion model (our **BiasAmplifier**, BA).

Key Advantage

BA learns bias from a synthetic substitute set, never seeing real samples. As such it cannot memorize any bias-conflicting sample, by construction.

Diffusing DeBias: A Plug-in for Unsupervised Debiasing

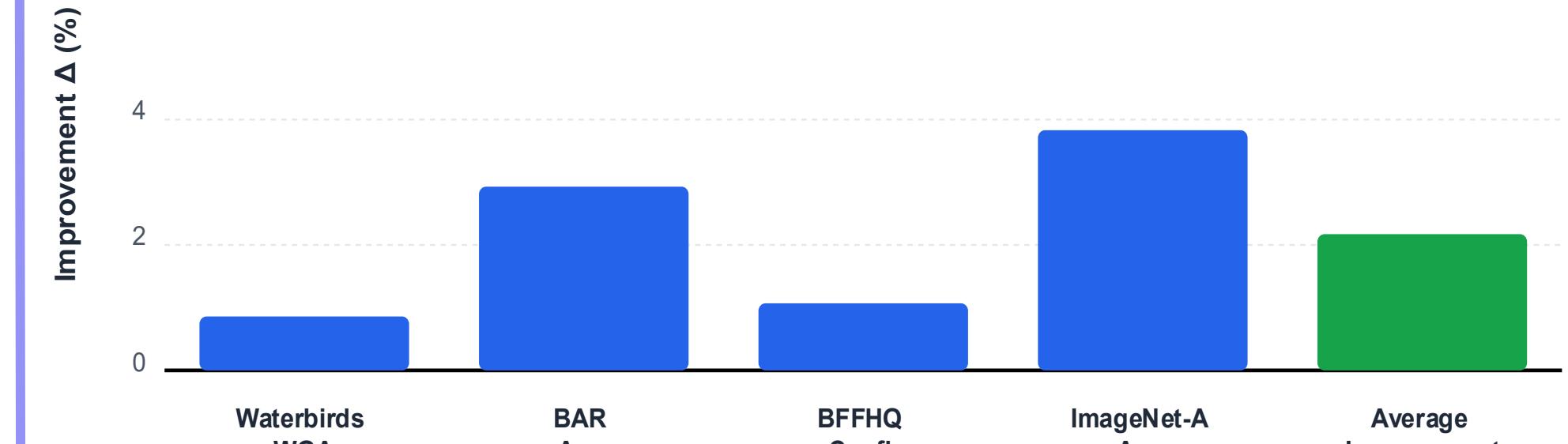
DDB is a plug-in for unsupervised model debiasing. Hence, it can be integrated as prior step for different debiasing strategies (e.g., [4], [5]).



Results

DDB Improvement Over State-of-the-Art Methods

Performance delta (Δ%) compared to best competitor per benchmark



Method	ID.ACC \uparrow	BG-Gap \downarrow	CoObj-Gap \downarrow	BG-CoObj-Gap \downarrow
GroupDRO [43]	91.60	10.90	3.60	16.40
LLE [32]	96.70	2.10	2.70	5.90
LfF [39]	97.20	11.60	18.40	63.20
JTT [35]	95.90	8.10	13.30	40.10
EIIL [7]	95.50	4.20	24.70	44.90
DebiAN [33]	98.00	14.90	10.50	69.00
DDB-I (ours)	86.39 ± 0.74	1.85 ± 3.21	0.52 ± 1.38	0.12 ± 1.56
DDB-II (ours)	98.56 ± 0.92	2.30 ± 0.60	11.10 ± 1.20	46.70 ± 2.42

Multiple bias case (UrbanCars).

Debiasing Recipe	BA trained on Synthetic (DDB)	BA trained on Real
Recipe I (BA + G-DRO)	90.81%	79.43% (1 epoch)
Recipe II (LfF-style)	91.56%	78.45%

Ablation Study on using synthetic biased images for training our BA.

Summary of Contributions

We introduce DDB, a novel plug-in framework that learns bias distribution of training data using a conditional diffusion model.

DDB trains a Bias Amplifier on synthetic bias-aligned samples. This uniquely avoids common issues like bias-conflicting sample overfitting and interference.

DDB achieves new state-of-the-art results on popular biased benchmarks (for both single and multiple biases) outperforming previous methods, including those based on Vision-Language Models.

References

- [1] D'Inca et al. (2024). "Openbias: Open-set bias detection in text-to-image generative models." In: CVPR 2024
- [2] Kim et al. (2024). "Discovering and mitigating visual biases through keyword-explanation." In: CVPR 2024
- [3] Lee et al. (2023). "Revisiting the importance of amplifying bias for debiasing." In: AAAI 2023.
- [4] Nam et al. (2020). "Learning from failure: De-biasing classifier from biased classifier." In: NIPS 2020
- [5] Sagawa et al. (2020). "Distributionally robust neural networks." In: ICLR 2020